Results 1 to 1 of 1
  1. #1
    Hot Member www.desirulez.net
    Join Date
    Nov 2012
    Posts
    1,874

    Default The Brain Activity Map

    Follow us on Social Media







    A proposed effort to map brain activity on a large scale, expected to be announced by the White House later this month, could help neuroscientists understand the origins of cognition, perception, and other phenomena. These brain activities haven’t been well understood to date, in part because they arise from the interaction of large sets of neurons whose coördinated efforts scientists cannot currently track.

    “There are all kinds of remarkable tools to study the microscopic world of individual cells,” says John Donoghue, a neuroscientist at Brown and a participant in the project. “And on the macroscopic end, we have tools like MRI and EEG that tell us about the function of the brain and its structure, but at a low resolution. There is a gap in the middle. We need to record many, many neurons exactly as they operate with temporal precision and in large areas,” he says.

    An article published Thursday in Science online expands the project’s already ambitious goals beyond just recording the activity of all individual neurons in a brain circuit simultaneously. Researchers should also find ways to manipulate the neurons within those circuits and understand circuit function through new methods of data analysis and modeling, the authors write.

    Understanding how neurons communicate with one another across large regions of the brain will be critical to understanding how the brain works, according to participants in the project. Other efforts to map out the physical connections in the brain are already under way (see “TR10: Connectomics” and “Mapping the Brain on a Massive Scale”), but these projects look at static brains or can only get a rough view of how regions of the brain communicate. The new project will probably start applying its novel and yet unknown technologies on simpler brains, such as those of flies, and will probably take decades to achieve its goals.

    Numerous leaders from the fields of neuroscience, nanotechnology, and synthetic biology are expected to collaborate on the effort. “We need something large scale to try to build tools for the future,” says Rafael Yuste, a neurobiologist at Columbia University and a member of the project. “We view ourselves as tool builders. I think we could provide to the scientific community the methods that could be used for the next stage in neuroscience.”

    In addition to deepening fundamental understanding of the brain, the project may also lead to new treatments for psychiatric and neurological disorders. “If we truly understand how things like thoughts, cognition, and other features of the brain emerge, then we should have a better understanding of mood disorders, Parkinson’s, epilepsy and other conditions that are thought to arise from brain-wide circuitry problems,” says Donoghue.

 

 

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •